Problem 1

A young Batman stands 30 ft . away from a hot air balloon that rests on the ground. He has tied a kite string to the bottom of the hot air balloon. As the balloon rises, young Batman notices that he is letting out string at a rate of $10 \mathrm{ft} . / \mathrm{min}$ at the exact time that he has let out 50 ft . of string. How fast is the balloon rising at this time? How fast is the angle between the ground and the string increasing at this time?

Problem 2

Suppose that a cube's volume increases at a constant rate of $2 \frac{\mathrm{~cm}^{3}{ }^{3}}{\mathrm{~min} .}$. How fast are it's sides growing at the time the sides are 10 cm .? How fast is the surface area increasing at this time?

Problem 3

Suppose that a we are draining a conical tank whose height is 8 ft . and radius is 4 ft . We notice that that height of water is dropping at a rate of $2 \frac{f t}{\mathrm{~min}}$. at the time the height is 3 ft . How much water (in $f t .^{3}$) is coming out at this time?

